Part Number Hot Search : 
LTC4213 W30N60 LTC3827 LTC3713 EFF02FF PUMD10 01515 ER506
Product Description
Full Text Search
 

To Download MB3891 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 FUJITSU SEMICONDUCTOR DATA SHEET
DS04-27801-1E
ASSP For Power Management Applications (Mobile Phones)
Power Management IC for GSM Mobile Phone
MB3891
s DESCRIPTION
MB3891 is intended to be used in future GSM-phones, Dual Band phones and Dual Mode phones. It contains all the necessary functions to support all Digital, Analog and RF blocks in these phones. A Charge-pump including a Logic Level Translation circuit is built in to support SIM-card (SmartCard) of both 3 and 5 Volt technology. The circuit contains a charger for a rechargeable Lithium coin cell of a Real Time Clock. A complex control circuit is built in to generate main reset and to turn on and off the different LDO's.
s FEATURES
* Supply voltage range : 3 V to 5.5 V * Low power consumption current during standby : 400 A (MAX) * 6-channel low-saturation voltage type series regulator : 2.1 V/2 channels, 2.8 V/3 channels, 2.5 V/2.8 V switch * Error prevention function during Low voltage * Power on reset function * 3 V/5 V SW for SIM-Card * SIM interface function * Backflow prevention function for Battery-Backup * Temperature prevention function
s PACKAGE
64-pin plastic LQFP
(FPT-64P-M03)
MB3891
s PIN ASSIGNMENT
(TOP VIEW)
47 : SW3-OUTPUT 45 : SW1-OUTPUT
48 : SW3-INPUT
46 : SW1-INPUT
N.C. : 49 N.C. : 50 SW2-OUTPUT : 51 SW2-INPUT : 52 SW1-ON : 53 SW2-ON : 54 SW3-ON : 55 CONT3 : 56 CONT5 : 57 OUT5 : 58 GND5 : 59 VBAT3 : 60 VBAT3 : 61 VBAT3 : 62 N.C. : 63 N.C. : 64
33 : RESET-IN
44 : CONT4
34 : CLK-IN
43 : VBAT4
42 : VBAT4
38 : SIM-IO
39 : GND4
41 : OUT4
40 : OUT4
35 : P-IO
36 : RST
37 : CLK
32 : GND-VSIM 31 : VCAP- 30 : VCAP+ 29 : VSIMOUT 28 : OSC 27 : SIMPROG 26 : VSIM-ON 25 : VCC-VSIM 24 : REF-OUT 23 : VFIL 22 : VREF 21 : V-BACKUP 20 : VBAT2 19 : GND1 18 : DELAYCAP 17 : XPOWERGOOD
N.C. : 1
N.C. : 2
OUT3 : 3
OUT3 : 4
GND3 : 5
OUT2 : 6
OUT2 : 7
VBAT1 : 8
VBAT1 : 9
VBAT1 : 10
VBAT1 : 11
OUT1 : 12
OUT1 : 13
CONT1 : 14
CONT6 : 15
(FPT-64P-M03)
2
CONT2 : 16
MB3891
s PIN DESCRIPTION
Pin No. 1, 2 3, 4 5 6, 7 8, 9, 10, 11 12, 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40, 41 Symbol N.C. OUT3 GND3 OUT2 VBAT1 OUT1 CONT1 CONT6 CONT2 XPOWERGOOD DELAYCAP GND1 VBAT2 V-BACKUP VREF VFIL REF-OUT VCC-VSIM VSIM-ON SIMPROG OSC VSIMOUT VCAP+ VCAP- GND-VSIM RESET-IN CLK-IN P-IO RST CLK SIM-IO GND4 OUT4 I/O O O O I I I O O O O O I I O I I I/O O O I/O O Non connection. LDO3 output pin. LDO3 ground pin. LDO2 output pin. Battery voltage input pin for LDO1 and LDO2. LDO1 output pin. Power on input from keypad (Active low, Pulled up to VBAT2). "CONT6" input from digital system P (Active high). External accessory supply voltage Enable (Active high). Generates the main reset. (Active low, when OUT1 is out of regulation). Timing capacitor for XPOWERGOOD delay. LDO1, LDO2, V-BACKUP, Reference and System ground pin. Battery voltage input pin for both UVLO's, Reference and V-BACKUP LDO. Supply voltage for Charger for rechargeable Lithium coin cell. Supply voltage for Reference. Reference voltage Filter. Reference output voltage (Present when BACKUP UVLO is high). Input voltage for charge pump. (Supplied by VBAT1). VSIM supply Enable (Active high). VSIM programming: Low = 3 V SIM, High = 5 V SIM. Oscillator output pin. Supply voltage for 3 or 5 V SIM-Card (SmartCard). Positive side of boost capacitor. Negative side of boost capacitor. 3 or 5 V SIM-Card (SmartCard) ground pin. Non level shifted SIM reset (P side). Non level shifted clock (P side). Non level shifted bi-directional data input/output (P side). Level shifted SIM reset (SmartCard side). Level shifted SIM clock (SmartCard side). Level shifted bi-directional SIM data input/output (SmartCard side). LDO4 ground pin. LDO4 output pin. Descriptions
(Continued)
3
MB3891
(Continued) Pin No.
42, 43 44 45 46 47 48 49, 50 51 52 53 54 55 56 57 58 59 60, 61, 62 63, 64
Symbol VBAT4 CONT4 SW1-OUTPUT SW1-INPUT SW3-OUTPUT SW3-INPUT N.C. SW2-OUTPUT SW2-INPUT SW1-ON SW2-ON SW3-ON CONT3 CONT5 OUT5 GND5 VBAT3 N.C.
I/O I O I O I O I I I I I I O Supply voltage for LDO4.
Descriptions OUT4 output voltage selection ("L"=2.8 V,"H"=2.5 V). Output of general purpose switch number 1 (Drain). Input of general purpose switch number 1 (Source). Output of general purpose switch number 3 (Drain). Input of general purpose switch number 3 (Source). Non connection. Output of general purpose switch number 2 (Drain). Input of general purpose switch number 2 (Source). General purpose switch number 1 Enable (Active high). General purpose switch number 2 Enable (Active high). General purpose switch number 3 Enable (Active high). OUT3 and OUT4 supply voltage Enable (Active high). OUT5 supply voltage Enable (Active high). Output terminal of LDO5. LDO5 ground pin. Supply voltage for LDO and LDO5. Non connection.
4
MB3891
s BLOCK DIAGRAM
VBAT2 20 Over Temp Protection Main UVLO VBAT1 8 9 10 11 LDO1 ON OUT 12 OUT1 13 POR 17 XPOWERGOOD 18 DELAYCAP 19 GND1 CONT6 15 LDO2 ON CONT2 16 SW1 SW1-ON 53 45 SW1-OUTPUT SW2-ON 54 SW2 SW3-ON 55 51 SW2-OUTPUT SW3 CONT3 56 48 SW3-INPUT 47 SW3-OUTPUT 60 61 VBAT3 62 LDO3 ON OUT 3 OUT3 4 5 GND3 VREF + - REF-OUT 24 RESET-IN 33 CLK-IN 34 P-IO 35 RST 36 CLK 37 SIM-IO 38 VCC-VSIM 25 VSIM-ON 26 SIMPROG 27 OSC 28 32 GND-VSIM 29 VSIMOUT VSIMOUT Charge-pump 30 VCAP+ 31 VCAP- BACKUP UVLO LDO6 ON OUT 21 V-BACKUP GSM/SIM Logic Level Translation LDO5 ON OUT 58 OUT5 VREF-AMP LDO4 OUT ON CONT4 42 VBAT4 43 40 OUT4 41 39 GND4 52 SW2-INPUT 46 SW1-INPUT OUT 6 OUT2 7
CONT1 14
CONT5 57 CONT4 44 VREF 22
VFIL 23
59 GND5
N.C. Pin : 1, 2, 49, 50, 63, 64
5
MB3891
s ABSOLUTE MAXIMUM RATINGS
Parameter Power supply voltage Symbol VBAT VCC-VSIM IO IO LDO regulator IO IO IO VSIMOUT chargepump Power dissipation Storage temperature IO PD Tstg OUT1 pin OUT2 pin OUT3 pin OUT4 pin OUT5 pin VSIMOUT pin Ta +25 C Conditions Rating Min. -0.3 -0.3 -55 Max. 7 7 120 50 100 100 50 10 800* +125 Unit V V mA mA mA mA mA mA mW C
* : The packages are mounted on the dual-sided epoxy board(10 cm x 10 cm) WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
s RECOMMENDED OPERATING CONDITIONS
Parameter Power supply voltage LDO capacitor guarantee value REF-OUT capacitor guarantee value VSIMOUT capacitor guarantee value Operating ambient temperature Symbol VBAT VCC-VSIM CO CO CO Ta Conditions OUT1 to OUT5, V-BACKUP pin REF-OUT pin VSIMOUT pin Value Min. 3.0 3.0 0.8 -20 Typ. 3.6 3.6 1.0 0.027 10 +25 Max. 5.5 5.5 +85 Unit V V F F F C
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.
6
MB3891
s ELECTRICAL CHARACTERISTICS
(Ta = +25 C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V) Value Conditions Unit Min. Typ. Max. 80 A
Parameter
Symbol
Pin No.
IBAT1 Shutdown supply current IBAT2 Standby supply current Operating ground current
8, 9, 10, 11, UVLO = "L", 20, 42, 43, BACKUP UVLO = "L" 60, 61, 62 8, 9, 10, 11, UVLO = "L", 20, 42, 43, BACKUP UVLO = "H" 60, 61, 62 8, 9, 10, 11, All circuit's = On 20, 42, 43, (No load) 60, 61, 62 4, 5, 19, 32, 59 All circuit's -VSIM = On Max. load on all regulators
160
A
IBAT3
400
A
IGND
10
mA
VTHH UVLO threshold voltage VTHL
8, 9, 10, 11, 20, 42, 43, OUT1 = ON 60, 61, 62 8, 9, 10, 11, 20, 42, 43, OUT1 = OFF 60, 61, 62 8, 9, 10, 11, 20, 42, 43, V-BACKUP = ON 60, 61, 62 8, 9, 10, 11, 20, 42, 43, V-BACKUP = OFF 60, 61, 62 16, 56, 57 16, 56, 57 14, 15, 44 14, 15, 44 26, 27 26, 27 17 14, 57 15, 53, 54, 55
2.980
3.080
3.180
V
2.780
2.880
2.980
V
VTHH General BACKUP UVLO threshold voltage VTHL
2.980
3.080
3.180
V
2.580 0.7 x OUT1 0 0.7 x VBAT 0 0.7 x
VCC-VSIM
2.680 15* 200* 200*
2.780
V
VIH VIL VIH Input voltage VIL VIH VIL Pull-up resistor Pull-down resistor * : Standard design value RPU RPU RPD
OUT1 0.3 x OUT1 VBAT 0.3 x VBAT
VCC-VSIM
V V V V V V k k k
0
0.3 x
VCC-VSIM

(Continued)
7
MB3891
(Ta = +25 C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V) Value Conditions Unit Min. Typ. Max. V mV mV dB mV A mA V V V ms V mV mV dB mV A mA V 45 0.8 x OUT1 0 10 45 25 10 30 500 30 2 500 OUT1 0.1 x OUT1 40 10 30 250 30 1 350 4.0 7.0 7.0
Parameter Output voltage Line regulation Load reguration LDO1 (OUT1) Ripple rejection VBAT1/OUT1 Dropout voltage GND current at low load GND current at max. load Output noise volt. (RMS)
Symbol VO Line Load R.R VDO IGND IGND VNOVL VOH
Pin No.
12, 13 -50 A > OUT1 > -120 mA 2.000 2.100 2.200 12, 13 3.1 V < VBAT1 < 5.5 V 12, 13 -50 A > OUT1 > -120 mA 12, 13 f = 217 Hz 12, 13 OUT1 = -120 mA 19 19 12, 13 17 17 17 6, 7 6, 7 6, 7 6, 7 6, 7 19 19 6, 7 45, 46 51, 52 47, 48 OUT1 > -1 mA OUT1 = -120 mA f = 10 Hz to 1 MHz, OUT1 = 1 F DELAYCAP = 0.033 F 3.1 V < VBAT1 < 5.5 V -50 A > OUT2 > -50 mA f = 217 Hz OUT2 = -50 mA OUT2 > -1 mA OUT2 = -50 mA f = 10 Hz to 1 MHz, OUT2 = 1 F SW1-INPUT = 2.8 V (Gate/Source = 2.8 V) SW2-INPUT = 2.8 V (Gate/Source = 2.8 V) SW3-INPUT = 2.8 V (Gate/Source = 2.8 V)
XPOWER- Output voltage GOOD (RESET) Hold time Output voltage Line regulation Load regulation LDO2 (OUT2) Ripple rejection VBAT1/OUT2 Dropout voltage GND current at low load GND current at max. load Output noise volt. (RMS)
VOL TXPG VO Line Load R.R VDO IGND IGND VNOVL RSW1
-50 A > OUT2 > -50 mA 2.700 2.800 2.900
General purpose switches
Input/Output resistance
RSW2 RSW3
(Continued)
8
MB3891
(Ta = +25 C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V) Value Conditions Unit Min. Typ. Max. -50 A > OUT3 > -100 mA 2.700 2.800 2.900 3.1 V < VBAT3 < 5.5 V -50 A > OUT3 > -100 mA f = 217 Hz OUT3 = -100 mA OUT3 > -1 mA OUT3 = -100 mA f = 10 Hz to 1 MHz, OUT3 = 1 F 45 10 30 250 30 2 350 V mV mV dB mV A mA V V V mV mV dB mV A mA V V mV mV dB mV A mA V
Parameter Output voltage Line regulation Load regulation Ripple rejection VBAT3/OUT3 Dropout voltage GND current at low load GND current at max. load Output noise volt. (RMS)
Symbol Pin No. VO Line Load R.R VDO IGND IGND VNOVL VO 3, 4 3, 4 3, 4 3, 4 3, 4 5 5 3, 4 40, 41 40, 41
LDO3 (OUT3)
Output voltage VO Line regulation Load regulation LDO4 (OUT4) Ripple rejection VBAT4 - OUT4/OUT4 Dropout voltage GND current at low load GND current at max. load Output noise volt. (RMS) Output voltage Line regulation Load regulation Ripple rejection VBAT3/OUT5 Dropout voltage GND current at low load GND current at max. load Output noise volt. (RMS) Line Load R.R VDO IGND IGND VNOVL VO Line Load R.R VDO IGND IGND VNOVL
-50 A > OUT4 > -100 mA, 2.700 2.800 2.900 CONT4 = "L" -50 A > OUT4 > -100 mA, 2.400 2.500 2.600 CONT4 = "H" 45 10 30 250 30 2 500
40, 41 3.1 V < VBAT4 < 5.5 V 40, 41 -50 A > OUT4 > -100 mA 40, 41 f = 217 Hz 40, 41 OUT4 = -100 mA 39 39 40, 41 58 58 58 58 58 59 59 58 OUT4 > -1 mA OUT4 = -100 mA f = 10 Hz to 1 MHz, OUT4 = 1 F 3.1 V < VBAT3 < 5.5 V -50 A > OUT5 > -50 mA f = 217 Hz OUT5 = -50 mA OUT5 > -500 A OUT5 = -50 mA f = 10 Hz to 1 MHz, OUT5 = 1 F
-50 A > OUT5 > -50 mA 2.700 2.800 2.900 45 10 30 250 20 1 350
LDO5 (OUT5)
(Continued)
9
MB3891
(Ta = +25 C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V) Value Conditions Unit Min. Typ. Max. -10 A > V-BACKUP > -250 A 3.1 V < VBAT2 < 5.5 V -10 A > V-BACKUP > -250 A f = 217 Hz V-BACKUP > -10 A V-BACKUP = -250 A f = 10 Hz to 1 MHz, V-BACKUP = 1 F VBAT2 = 0 V, V-BACKUP = 3.0 V 0 A > REF-OUT > -50 A 3.1 V < VBAT2 < 5.5 V 0 A > REF-OUT > -50 A f = 217 Hz f = 10 Hz to 1 MHz, REF-OUT = 27 nF 2.000 2.100 2.200 25 10 30 10 50 500 100 V mV mV
Parameter Output voltage Line regulation Load regulation Ripple rejection VBAT2/ V-BACKUP
Symbol Pin No. VO Line Load 21 21 21
R.R
21
dB A A V nA V mV mV dB V V V mV mV
LDO6 (V-BACKUP) GND current at low load
IGND IGND VNOVL IRC VO Line Load R.R
19 19 21 21 24 24 24 24
GND current at max. load Output noise volt. (RMS) Reverse current Output voltage Line regulation Load regulation REF-OUT Ripple rejection VBAT2/ REF-OUT Output noise volt. (RMS)
1.200 1.225 1.250 50 10 6 250
VNOVL VO
24 29 29 29 29
Output voltage VSIMOUT chargepump Line regulation Load regulation VO Line Load
-50 A > VSIMOUT > -10 mA, 4.600 5.000 5.400 SIMPROG = "H" -50 A > VSIMOUT > -10 mA, 2.760 3.000 3.240 SIMPROG = "L" 3.1 V < VCC-VSIM < 5.5 V -50 A > VSIMOUT > -10 mA 50 100
(Continued)
10
MB3891
(Ta = +25 C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V) Value Conditions Unit Min. Typ. Max. f = 217 Hz 3.1 V < VCC-VSIM < 5.5 V, VSIMOUT = 5 V 3.1 V < VCC-VSIM < 5.5 V, VSIMOUT = 3 V VSIMOUT > -50 A VSIMOUT = -10 mA, VSIMOUT = 5 V f = 10 Hz to 1 MHz, VSIMOUT = 10 F VSIM-ON = "L" P-IO (max.) = -20 A P-IO (max.) = 1 mA 30 100 100 100 OUT1 0.3 x OUT1 OUT1 0.2 x OUT1 dB
Parameter Ripple rejection VCC-VSIM/ VSIMOUT
Symbol Pin No.
R.R
29
IO Output current IO VSIMOUT GND current at chargepump no load Efficiency at max. load Output ripple voltage Shutdown supply current IGND VRP ILDO VIH Input voltage GSM/SIM logic level translation p interface Output voltage VOL VIL VOH
29 29 32 25, 29 29 25 33, 34, 35 33, 34, 35 35 35
10 6 85 0.7 x OUT1 0 0.8 x OUT1 0
mA mA A %
mVPP
nA V V V V
(Continued)
11
MB3891
(Continued)
Parameter Symbol Pin No. VOH VOL Rise time Fall time Output voltage SIM interface Rise time 5V (SIMPROG Fall time = H) Output voltage TR TF VOH VOL TR TF VOH VOL VIH VIL Rise time Fall time TR TF VOH Output voltage VOL Rise time Fall time TR TF VOH Output voltage SIM interface Rise time 3V (SIMPROG Fall time = L) Output voltage VOL TR TF VOH VOL VIH Input voltage VIL Rise time Fall time 12 TR TF 38 38 38 SIM-IO = 30 pF SIM-IO = 30 pF 37 37 37 38 38 38 CLK (max.) = 200 A CLK-IN = CLK = 30 pF CLK-IN = CLK = 30 pF SIM-IO (max.) = -20 A SIM-IO (max.) = 1 mA 36 36 36 37 RST (max.) = 200 A RESET-IN = RST = 30 pF RESET-IN = RST = 30 pF CLK (max.) = -20 A 36 36 36 36 37 37 37 37 38 38 38 38 38 38 36 (Ta = +25 C, VBAT1 to VBAT4 = VCC-VSIM = 3.6 V) Value Conditions Unit Min. Typ. Max. RST (max.) = -20 A RST (max.) = 200 A RESET-IN = RST = 30 pF RESET-IN = RST = 30 pF CLK (max.) = -20 A CLK (max.) = 200 A CLK-IN = CLK = 30 pF CLK-IN = CLK = 30 pF SIM-IO (max.) = -20 A SIM-IO (max.) = 1 mA SIM-IO = 30 pF SIM-IO = 30 pF RST (max.) = -20 A
VSIMOUT
Output voltage
- 0.7 0 0.7 x
VSIMOUT

VSIMOUT
V V s s V V ns ns V V V V s s V V s s V V ns ns V V V V s s
0.6 400 400
VSIMOUT
0 3.8 0 0.7 x
VSIMOUT
0.5 27 27
VSIMOUT
0.4
VSIMOUT
Input voltage
0 0.8 x
VSIMOUT
0.8 1 1
VSIMOUT
0 0.7 x
VSIMOUT
0.2 x
VSIMOUT
400 400
VSIMOUT
0 0.7 x
VSIMOUT
0.2 x
VSIMOUT
50 50
VSIMOUT
0 0.7 x
VSIMOUT
0.4
VSIMOUT
0
0.2 x
VSIMOUT
1 1
MB3891
s TYPICAL CHARACTERISTICS
Power supply current vs. power supply voltage Power supply current IBAT (A) Power supply current IBAT (A)
400 350 300 250 200 150 100 50 0 0 1 2
Ta = +25 C CONT1 = "L" CONT2 = "H" CONT3 = "H" CONT4 = OPEN CONT5 = OPEN CONT6 = OPEN VSIM-ON = "H" SIMPROG = "H"
Power supply current vs. power supply voltage
350
Ta = +25 C CONT1 = OPEN CONT3 = "H"
300 CONT2 = "H"
250 CONT4 = OPEN 200 CONT6 = "H"
CONT5 = OPEN VSIM-ON = "H"
OUT1 = No load OUT2 = No load OUT3 = No load OUT4 = No load OUT5 = No load V-BACKUP = No load VSIMOUT = No load
150 SIMPROG = "H" 100 50 0 0 1 2
OUT1 = No load OUT2 = No load OUT3 = No load OUT4 = No load OUT5 = No load V-BACKUP = No load VSIMOUT = No load
3
4
5
3
4
5
Power supply voltage VBAT (V)
Power supply voltage VBAT (V)
Power supply current , GND current vs. power supply voltage Power supply current IBAT (mA) Output voltage VOUT1 (V)
450 Ta = +25 C 400 CONT1 = OPEN 350 CONT3 = "H"
CONT2 = "H"
Output voltage vs. power supply voltage (LDO1)
450 400 350 300 250 200 150 100 50 0 3.0
IBAT
GND current IGND (A)
2.5 2.0 1.5 1.0 0.5 0.0 0 1 2 3 4 Ta = +25 C OUT1 = 1 F CONT1 = OPEN CONT6 = "H" 5 6 7
300 CONT5 = OPEN 250 CONT6 = "H" VSIM-ON = "H" 200 SIMPROG = "H" 150 100 50 0 0 1 2 3
CONT4 = OPEN
IGND
OUT1 = 18 OUT2 = 56 OUT3 = 28 OUT4 = 28 OUT5 = 56 V-BACKUP = 8.4 k VSIMOUT = 510
4
5
Power supply voltage VBAT (V)
Power supply voltage VBAT (V)
Output voltage vs. power supply voltage (LDO1)
3.0
Output voltage vs. load current (LDO1)
2.2
Output voltage VOUT1 (V)
Output voltage VOUT1 (V)
Ta = +25 C OUT1 = 1 F 2.5 CONT1 = "L" CONT6 = OPEN 2.0 1.5 1.0 0.5 0.0 0 1 2 3 4 5
2.1 2.0 1.9 1.8 1.7 0 Ta = +25 C VBAT = 3.6 V CONT1 = "L" CONT6 = OPEN -100 -200 -300 -400 -500 -600 -700 -800
Power supply voltage VBAT (V)
Load current ILOAD (mA)
(Continued)
13
MB3891
Ripple rejection vs. frequency (LDO1) Ripple rejection R.R (dBm) Ripple rejection R.R (dBm)
0 -20 -40 -60 -80 -100 Ta = +25 C VBAT = 3.6 V OUT1 = 1 F OUT1 = 18 CONT1 = "L" CONT6 = OPEN 10 100 1k 10 k 100 k 1M 0 -20 -40 -60 -80 -100
Ripple rejection vs. frequency (LDO1)
Ta = +25 C VBAT = 3.6 V OUT1 = 1 F CONT1 = "L" CONT6 = OPEN
10
100
1k
10 k
100 k
1M
Frequency f (Hz)
Frequency f (Hz)
Dropout voltage vs. load current (LDO1)
0.6
Output voltage vs. ambient temperature (LDO1)
2.13
0.5 0.4 0.3 0.2
Ta = +85 C
Output voltage VOUT1 (V)
Dropout voltage VDO (V)
VBAT = 2.1 V CONT1 = OPEN CONT6 = "H"
2.12 2.11 2.10 2.09 2.08 -40
VBAT = 3.6 V CONT1 = OPEN CONT6 = "H"
Ta = -20 C Ta = +25 C
0.1 0.0 0 -50 -100 -150 -200
-20
0
20
40
60
80
100
Load current ILOAD (mA) Power supply voltage VBAT
Ambient temperature Ta ( C)
Output voltage rising waveforms (LDO1)
10 5 0 OUT1 2.0 1.5 1.0 Ta = +25C OUT1 = 18 CONT1 = "L" CONT6 = OPEN 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.5 0.0 VBAT
t (ms)
14
Output voltage VOUT1 (V)
MB3891
Output voltage VOUT1 (V) Power supply voltage VBAT (V) Power supply voltage VBAT (V)
Output voltage falling waveforms (LDO1)
4 3 2 1 VBAT 0 OUT1 0 2 1 Ta = +25C OUT1 = No load CONT1 = "L" CONT6 = OPEN
Output voltage falling waveforms (LDO1)
4 2 0 2 1 OUT1 0 VBAT Ta = +25C VBAT = 1 F OUT1 = No load CONT1 = "L" CONT6 = OPEN
0
50 100 150 200 250 300 350 400 450 500
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
t (ms) Input voltage VCONT1 (V) Output voltage rising waveforms (LDO1)
4 2 0 CONT1 OUT1 2 1 Ta = +25C VBAT = 3.6 V OUT1 = 18 CONT6 = OPEN 0 20 40 60 80 100 120 140 160 180 200 0
t (s) Output voltage falling waveforms (LDO1)
10 5 0 CONT1
Output voltage VOUT1 (V) Input voltage VCONT1 (V)
2.0 1.5 1.0 0.5
OUT1 0.0
0
20
40
60
80 100 120 140 160 180 200
t (s) Waveform at rapid change of output load (LDO1)
OUT1 2.0 1.5 1.0 0.5 0.0 VC 0 OUT1 = 0 A 0 10 20 30 40 50 -120 mA 60 70 80 90 100
t (ms) [Measurement diagram]
VBAT = 3.6 V
Output voltage VOUT1 (V)
NPN collector voltage VC (V)
Ta = +25C VBAT = 3.6 V CONT1 = "L" CONT6 = OPEN 2 1
VREF = 1.225 V
(IC internal)
LDO1
OUT1 120 mA
1 F VC 4V 0V
t (s)
(Continued)
15
Output voltage VOUT1 (V)
Ta = +25C VBAT = 3.6 V OUT1 = No load CONT6 = OPEN
Output voltage VOUT1 (V)
MB3891
Output voltage VOUT1 (V)
Waveform at rapid change of output load (LDO1)
OUT1 2.0 1.5 1.0 VC 0.5 0.0 Ta = +25C VBAT = 3.6 V CONT1 = "L" CONT6 = OPEN OUT1 = -120 mA 0 A 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 2 1 0
[Measurement diagram]
VBAT = 3.6 V VREF = 1.225 V
NPN Collector voltage VC (V)
(IC internal) LDO1
OUT1 120 mA
1 F VC 4V 0V
t (ms) Waveform at rapid change of output load (LDO2) Output voltage VOUT2 (V)
3.0 2.5 2.0 1.5 1.0 0.5 VC 0.0 OUT2 = 0 A -50 mA 0 10 20 30 40 50 60 70 80 90 100 0
[Measurement diagram]
VBAT = 3.6 V
NPN Collector voltage VC (V)
OUT2 Ta = +25C VBAT = 3.6 V CONT1 = "L" CONT2 = "H" CONT6 = OPEN
VREF = 1.225 V
3 2 1
(IC internal)
LDO2
OUT2 50 mA
1 F VC 4V 0V
t (s)
Waveform at rapid change of output load (LDO2) Output voltage VOUT2 (V)
3.0 2.5 2.0 1.5 1.0 0.5 0.0 VC 3 2 1 0
[Measurement diagram]
VBAT = 3.6 V VREF = 1.225 V
NPN Collector voltage VC (V)
OUT2
(IC internal) LDO2
OUT2 50 mA
Ta = +25C VBAT = 3.6 V CONT1 = "L" CONT2 = "H" CONT6 = OPEN OUT2 = -50 mA 0 A 0 10 20 30 40 50 60 70 80 90 100
1 F VC 4V 0V
t (ms)
(Continued)
16
MB3891
Reference voltage vs. power supply voltage
1.4
Reference voltage vs. ambient temperature
1.24
Reference voltage VFIL (V)
1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 1 2 3 4 Ta = +25 C VFIL = 0.1 F 5 6 7
Reference voltage VFIL (V)
VBAT = 3.6 V
1.23 1.22 1.21 1.20 1.19 -40
-20
0
20
40
60
80
100
Power supply voltage VBAT (V)
Ambient temperature Ta ( C)
Power supply current vs. power supply voltage (VSIMOUT Chargepump) Power supply current ICC-VSIM (A) Power supply current ICC-VSIM (A)
100000 10000 1000 VSIMOUT = No load 100 10 1 0 1 2 3 Ta = +25 C VBAT = 3.6 V VSIM-ON = "H" SIMPROG = "H" 4 5 VSIMOUT = 510
Power supply current vs. power supply voltage (VSIMOUT Chargepump)
100000 10000 1000 100 10 1 0 1 2 3 VSIMOUT = No load Ta = +25 C VBAT = 3.6 V VSIM-ON = "H" SIMPROG = "L" 4 5 VSIMOUT = 510
Power supply voltage VCC-VSIM (V)
Power supply voltage VCC-VSIM (V)
Output voltage vs. power supply voltage (VSIMOUT Chargepump) Output voltage VSIMOUT (V)
5 4 3 2 1 0 0 1 2 3 4 SIMPROG = "L" VSIMOUT = No load Ta = +25 C VBAT = 3.6 V VSIM-ON = "H" 5 6 7 SIMPROG = "H" VSIMOUT = No load
Power supply voltage VCC-VSIM (V)
(Continued)
17
MB3891
Output voltage vs. load current (VSIMOUT Chargepump)
3.00 2.99 2.98 2.97 2.96 2.95 2.94 2.93 2.92 2.91 2.90 0
Output voltage vs. load current (VSIMOUT Chargepump)
5.00
Output voltage VSIMOUT (V)
Output voltage VSIMOUT (V)
VCC-VISM = 5.5 V
Ta = +25 C VSIM-ON = "H" SIMPROG = "L"
4.95 4.90 4.85 4.80 4.75 4.70 4.65 4.60 0
Ta = +25 C VSIM-ON = "H" SIMPROG = "H"
VCC-VISM = 5.5 V
VCC-VISM = 3.1 V VCC-VISM = 3.6 V
VCC-VISM = 3.1 V
VCC-VISM = 3.6 V
-5
-10
-15
-20
-5
-10
-15
-20
Load current ILOAD (mA)
Load current ILOAD (mA)
Ripple rejection vs. frequency (VSIMOUT Chargepump) Ripple rejection R.R (dBm) Ripple rejection R.R (dBm)
0 -20 -40 -60 -80 -100 10 100 1k Ta = +25 C VBAT = VCC-VSIM = 3.6 V VSIM-ON = "H" SIMPROG = "H" VCAP+ VCAP- = 0.1 F VSIMOUT = 10 F VSIMOUT = 510 10 k 100 k 1M 0 -20 -40 -60 -80 -100 10
Ripple rejection vs. frequency (VSIMOUT Chargepump)
Ta = +25 C VBAT = VCC-VSIM = 3.6 V VSIM-ON = "H" SIMPROG = "H" VCAP+ VCAP- = 0.1 F VSIMOUT = 10 F
100
1k
10 k
100 k
1M
Frequency f (Hz) Ripple rejection vs. frequency (VSIMOUT Chargepump) Ripple rejection R.R (dBm) Ripple rejection R.R (dBm)
0 -20 -40 -60 -80 -100 10 100 1k Ta = +25 C VBAT = VCC-VSIM = 3.6 V VSIM-ON = "H" SIMPROG = "L" VCAP+ VCAP- = 0.1 F VSIMOUT = 10 F VSIMOUT = 510 10 k 100 k 1M 0 -20 -30 -40 -80 -100 10
Frequency f (Hz) Ripple rejection vs. frequency (VSIMOUT Chargepump)
Ta = +25 C VBAT = VCC-VSIM = 3.6 V VSIM-ON = "H" SIMPROG = "L" VCAP+ VCAP- = 0.1 F VSIMOUT = 10 F
100
1k
10 k
100 k
1M
Frequency f (Hz)
Frequency f (Hz)
(Continued)
18
MB3891
Efficiency vs. power supply voltage (VSIMOUT Chargepump)
100 90 80 70 60 50 40 30 20 10 0 3.0 Ta = +25 C VSIM-ON = "H" SIMPROG = "L" 100 90 80 70 60 50 40 30 20 10 0 3.0
Efficiency vs. power supply voltage (VSIMOUT Chargepump)
Ta = +25 C VSIM-ON = "H" SIMPROG = "H" ILOAD = -10 mA
Efficiency (%)
ILOAD = -10 mA ILOAD = -1 mA
Efficiency (%)
ILOAD = -1 mA
3.5
4.0
4.5
5.0
5.5
3.5
4.0
4.5
5.0
5.5
Power supply voltage VCC-VSIM (V)
Power supply voltage VCC-VSIM (V)
Efficiency vs. load current (VSIMOUT Chargepump)
100 90 80 70 60 50 40 30 20 10 0 0 Ta = +25 C VBAT = VCC-VSIM = 3.6 V VSIM-ON = "H" SIMPROG = "L" VCC-VSIM = 5.5 V VCC-VSIM = 3.6 V VCC-VSIM = 3.1 V 100 90 80 70 60 50 40 30 20 10 0 0
Efficiency vs. load current (VSIMOUT Chargepump)
Efficiency (%)
Efficiency (%)
VCC-VSIM = 3.1 V VCC-VSIM = 3.6 V VCC-VSIM = 5.5 V Ta = +25 C VBAT = VCC-VSIM = 3.6 V VSIM-ON = "H" SIMPROG = "H" -5 -10 -15 -20
-5
-10
-15
-20
Load current ILOAD (mA) Output voltage rising waveforms (VSIMOUT Chargepump)
10 5 0 VSIM-ON VSIMOUT 5 4 3 2 Ta = +25 C VBAT = VCC-VSIM = 3.6 V SIMPROG = "H" VSIMOUT = 510 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1 0
Load current ILOAD (mA) Output voltage rising waveforms (VSIMOUT Chargepump)
10 5 0 VSIMOUT 3 2 Ta = +25 C VBAT = VCC-VSIM = 3.6 V SIMPROG = "L" VSIMOUT = 510 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1 0 VSIM-ON
Output voltage VSIMOUT (V) Input voltage VSIM-ON (V)
Input voltage VSIM-ON (V)
t (ms)
t (ms)
(Continued)
19
Output voltage VSIMOUT (V)
MB3891
Input voltage VSIMPROG (V)
Input voltage VSIMPROG (V)
Output voltage rising waveforms (VSIMOUT Chargepump)
10 5 0 SIMPROG VSIMOUT 5 4 3 2 Ta = +25 C VBAT = VCC-VSIM = 3.6 V VSIMOUT = 510 VSIM-ON = "H" 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1 0
Output voltage falling waveforms (VSIMOUT Chargepump)
10 SIMPROG 0 5 5 4 VSIMOUT 3 2 Ta = +25 C VBAT = VCC-SIM = 3.6 V VSIMOUT = 510 VSIM-ON = "H" 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1 0
t (ms) Input voltage VSIM-ON (V) Output voltage falling waveforms (VSIMOUT Chargepump)
10 5 0 Ta = +25 C VBAT = VCC-VSIM = 3.6 V SIMPROG = "H" VSIMOUT = 510 VSIM-ON
t (ms) Output voltage VSIMOUT (V) Input voltage VSIM-ON (V) Output voltage falling waveforms (VSIMOUT Chargepump)
5 0 Ta = +25 C VBAT = VCC-VSIM = 3.6 V SIMPROG = "L" VSIMOUT = 510 VSIM-ON 3 2 1 VSIMOUT 0
10
5 4 3 2 1
VSIMOUT 0
0
5
10
15
20
25
30
35
40
45
50
0
5
10
15
20
25
30
35
40
45
50
t (ms) Output voltage waveforms (VSIMOUT Chargepump) Output voltage VSIMOUT (mV) Output voltage VSIMOUT (mV)
Ta = +25 C VBAT = VCC-VSIM = 3.6 V VSIM-ON = "H" SIMPROG = "H" VSIMOUT = No load AC COUPLED
t (ms) Output voltage waveforms (VSIMOUT Chargepump)
Ta = +25 C VBAT = VCC-SIM = 3.6 V VSIM-ON = "H" SIMPROG = "L" VSIMOUT = No load AC COUPLED
40 20 0 -20 -40
20 0 -20
0
2
4
6
8
10
12
14
16
18
20
0
2
4
6
8
10
12
14
16
18
20
t (s) 20
t (s)
(Continued)
Output voltage VSIMOUT (V)
Output voltage VSIMOUT (V)
Output voltage VSIMOUT (V)
MB3891
Output voltage waveforms (VSIMOUT Chargepump) Output voltage VSIMOUT (mV) Output voltage VSIMOUT (mV)
Output voltage waveforms (VSIMOUT Chargepump)
40 20 0 -20 -40 Ta = +25 C VBAT = VCC-VSIM = 3.6 V VSIM-ON = "H" SIMPROG = "L" VSIMOUT = 510 AC COUPLED 0 2 4 6 8 10 12 14 16 18 20
20 0 -20 Ta = +25 C VBAT = VCC-VSIM = 3.6 V VSIM-ON = "H" SIMPROG = "L" VSIMOUT = 5.1 k AC COUPLED 0 2 4 6 8 10 12 14 16 18 20
t (s) Output voltage waveforms (VSIMOUT Chargepump) Output voltage VSIMOUT (mV) Output voltage VSIMOUT (mV)
60 40 20 0 -20 -40 -60
t (s) Output voltage waveforms (VSIMOUT Chargepump)
40 20 0 -20 -40 Ta = +25 C VBAT = VCC-VSIM = 3.6 V VSIM-ON = "H" SIMPROG = "H" VSIMOUT = 510 AC COUPLED 0 2 4 6 8 10 12 14 16 18 20
Ta = +25 C VBAT = VCC-VSIM = 3.6 V VSIM-ON = "H" SIMPROG = "H" VSIMOUT = 5.1 k AC COUPLED 0 2 4 6 8 10 12 14 16 18 20
t (s) Output voltage vs. input voltage (SIM Inter5
t (s) Output voltage vs. input voltage (SIM Interface)
2.5
Output voltage VSIMIO (V)
4 3 2 1 0 0.0 0.5 1.0 SIMPROG = "L"
Output voltage VUPIO (V)
SIMPROG = "H"
2.0 1.5 1.0 0.5 0.0 0 1 2 3 4 5 Ta = +25 C VBAT = VCC-VSIM = 3.6 V VSIM-ON = "H" SIMPROG = "L" or "H" CONT1 = "L" CONT6 = OPEN
Ta = +25 C VBAT = VCC-VSIM = 3.6 V VSIM-ON = "H" CONT1 = "L" CONT6 = OPEN 1.5 2.0 2.5
Input voltage VUPIO (V)
Input voltage VSIMIO (V)
(Continued)
21
MB3891
(Continued)
Output voltage vs. ambient temperature (SIM Interface)
3.10 VBAT = VCC-VSIM = 3.6 V VSIM-ON = "H" SIMPROG = "L" 5.00
Output voltage vs. ambient temperature (SIM Interface)
VBAT = VCC-VSIM = 3.6 V VSIM-ON = "H" SIMPROG = "H"
Output voltage VSIMOUT (V)
3.05 3.00 2.95 2.90 2.85 2.80 -40 -20
Output voltage VSIMOUT (V)
4.95 4.90 4.85 4.80 4.75 4.70 -40 -20
0
20
40
60
80
100
0
20
40
60
80
100
Ambient temperature Ta ( C) Power dissipation vs. ambient temperature Power dissipation PD (mW)
1000 800 600 400 200 0 -40
Ambient temperature Ta ( C)
-20
0
20
40
60
80
100
Ambient temperature Ta ( C)
22
MB3891
s FUNCTIONAL DESCRIPTION
(1) MAIN UVLO/BACKUP UVLO Transient power-on surge states or sudden drops in supply voltage (VBAT2) can cause an IC to operate abnormally, leading to destruction or damage to system elements. To prevent this type of fault, the undervoltage lockout circuits (UVLO/ Backup UVLO) will shut off the output from OUT1 to V-BACKUP if the supply voltage falls below the UVLO circuit threshold voltage (3.0 V/2.8 V typ.). System operation is restored as soon as the supply voltage rises above the UVLO circuits threshold voltage (3.2 V typ.). (2) LDO1 The LDO1 circuits uses the reference voltage supply and generates an output voltage (2.1 V typ.) at the OUT1 terminal (pin 12,13). Power can be drawn from the OUT1 terminal for external use, up to a maximum load current of 120 mA. (3) XPOWERGOOD (RESET) When the OUT1 terminal (pin 12,13) voltage exceeds 2.0 V (typ.), after a delay interval set by a capacitor (CDELAYCAP) connected to the DELAYCAP terminal (pin 18), the XPOWERGOOD terminal (pin 17) goes to "H" level and resets the microcomputer. At the same time, the LDO2, LDO3, and LDO4 output is controlled ON/OFF. (4) LDO2 The LDO2 circuit uses the reference voltage supply and generates an output voltage (2.8 V typ.) at the OUT2 terminal (pin 6,7) when the XPOWERGOOD terminal (pin 17) voltage is at "H" level and an "H" level signal is input at the CONT2 terminal (pin 16). Power can be drawn from the OUT2 terminal for external use, up to a maximum load current of 50 mA. (5) General Purpose switches Any of the OUT terminals can be connected to any SW-INPUT terminal so that when the corresponding SWON terminal is at "H" level, the OUT terminal voltage can be drawn from the associated SW-OUTPUT terminal. (6) LDO3 The LDO3 circuits uses the reference voltage supply and generates an output voltage (2.8 V typ.) at the OUT3 terminal (pin 3,4) when the XPOWERGOOD terminal (pin 17) voltage is at "H" level and an "H" level signal is input at the CONT3 terminal (pin 56). Power can be drawn from the OUT3 terminal for external use, up to a maximum load current of 100 mA. (7) LDO4 The LDO4 circuits uses the reference voltage supply and generates an output voltage (2.8 V typ.) at the OUT4 terminal (pin 40,41) when the XPOWERGOOD terminal (pin 17) voltage is at "H" level and an "H" level signal is input at the CONT3 terminal (pin 56) , and an "L" level signal is input at the CONT4 terminal (pin 44). When an "H" level signal is input at the CONT4 terminal, the output voltage at the OUT4 terminal is 2.5 V (typ.). Power can be drawn from the OUT4 terminal for external use, up to a maximum load current of 100 mA.
23
MB3891
(8) LDO5 The LDO5 circuits uses the reference voltage supply and generates an output voltage (2.8 V typ.) at the OUT5 terminal (pin 57) when the OUT1 terminal (pin 12,13) is in output state and an "H" level signal is input at the CONT5 terminal (pin 57). Power can be drawn from the OUT5 terminal for external use, up to a maximum load current of 50 mA. (9) LDO6 The LDO6 circuit uses the reference voltage supply and generates an output voltage (2.1 V typ.) at the V-BACKUP terminal (pin 21). Power can be drawn for external use, from the V-BACKUP terminal, up to a maximum load current of 250 A. (10) REF-OUT This circuit uses the reference voltage generated by the reference voltage block (1.225 V typ.) to produce a temperature compensated reference voltage (1.225 V typ.) at the REF-OUT terminal(pin 24) by means of a voltage follower. The reference voltage can also be drawn from the REF-OUT terminal for external use, up to a load current of 50 A. (11) VSIMOUT Chargepump The VSIMOUT charge pump uses the voltage from the battery and generates 5.0 V (typ.) voltage at the VSIMOUT terminal (pin 29) when an "H" level signal is input at the SIMPROG terminal (pin 27) , or 3.0 V (typ.) voltage when an "L" level signal input at the SIMPROG terminal. This voltage can also be drawn from the VSIMOUT terminal for external use, up to a load current of 10 mA. (12) GSM/SIM Logic Translation P Interface When a signal is input from the microprocessor to the RESET-IN terminal(pin 33) and CLK-IN terminal (pin 34), a level-shifted voltage is output from the RST terminal (pin 36) and CLK terminal (pin 37) to the SIM card. The P-IO terminal (pin 35) and SIM-IO terminal (pin 38) are input/output pins and carry signals between the microprocessor and SIM card. (13) SIM Interface 5 V (SIMPROG = "H") When an "H" level signal is input to the SIMPROG terminal (pin 27), 5.0 V (typ.) voltage is generated from the VSIMOUT terminal (pin 29) as a power supply for the SIM card. (14) SIM Interface 3 V (SIMPROG = "L") When an "L" level signal is input to the SIMPROG terminal (pin 27), 3.0 V (typ.) voltage is generated from the VSIMOUT terminal (pin 29) as a power supply for the SIM card.
s SETTING THE XPOWERGOOD TIME
When the OUT1 terminal (pin 12,13) voltage exceeds 2.0 V (typ.), the capacitor (CDELAYCAP) connected to the DELAYCAP terminal (pin 18) starts charging, the XPOWERGOOD terminal (pin 17) voltage rises. The XPOWERGOOD terminal voltage rising time (XPOWERGOOD time) can be set by a capacitor connected to the DELAYCAP terminal. XPOWERGOOD time : TXPG (s) = 0.8 x CDELAYCAP (F) : 24
MB3891
s OPERATION TIMING CHART
Input
VBAT1 to VBAT4, VCC-VSIM CONT1 CONT6
CONT5
CONT2
CONT3
SW1-ON SW2-ON (SW3-ON)
VSIM-ON
SIMPROG
Output
REF-OUT
OUT6 OUT1 2.0 V
XPOWERGOOD
delay
OUT5
OUT2 OUT3 (OUT4)
SW1-OUTPUT SW2-OUTPUT (SW3-OUTPUT) VSIMOUT = 5 V
VSIMOUT (1) (2) (3) (4) (5) (6) (7)
VSIMOUT = 3 V (8) (9)
(10) (11) (12) (13) (14) (15) (16) (17)
(1) : Battery controlled (2) : BACKUP UVLO ON (3) : phone turned on (4) : XPOWERGOOD on
(5) : OUT1 hold (6) to (12) : P controlled (14) : Main UVLO off (16) : BACKUP UVLO off
25
MB3891
s APPLICATION EXAMPLE
C12 1 F KEYPAD P 14 CONT1 15 CONT6 16 CONT2 XPOWERGOOD 17 53 SW1-ON 54 SW2-ON 55 SW3-ON 56 CONT3 57 CONT5 R3 200 k 44 CONT4 SW2-OUTPUT 51 22 VREF C8 0.1 F 23 VFIL 24 REF-OUT 26 VSIM-ON 27 SIMPROG OUT3 33 RESET-IN 34 CLK-IN 35 P-IO GND3 5 SW1-INPUT 46 SW1-OUTPUT 45 25 VCC-VSIM OUT5 58 28 OSC GND5 59 C9 10 F 29 VSIMOUT C10 0.1 F 30 VCAP+ 31 VCAP- OUT4 40 41 42 VBAT4 43 SW3-INPUT 48 SW3-OUTPUT 47 60 VBAT3 61 62 3 4 OUT2 6 7 DELAYCAP 18 GND1 19 OUT1 12 13 20 VBAT2 8 9 10 11 VBAT1
C11 1 F
C1 1 F
R1 200 k
C2 0.033 F
R2 200 k
C3 1 F
SW2-INPUT 52
R4 200 k R5 200 k
C13 1 F
C4 1 F
C5 1 F
C14 1 F C6 1 F
36 RST SIM 37 CLK 38 SIM-IO
GND4 39 V-BACKUP 21
32 GND-VSIM
C7 1 F N.C. Pin : 1, 2, 49, 50, 63, 64
26
MB3891
s USAGE PRECAUTIONS
* Printed circuit board ground lines should be set up with consideration for common impedance. * Take appropriate static electricity measures. * Containers for semiconductor materials should have anti-static protection or be made of conductive material. * After mounting, printed circuit boards should be stored and shipped in conductive bags or Containers. * Work platforms, tools, and instruments should be properly grounded. * Working personal should be grounded with resistance of 250 k to 1 M between body and ground. * Do not apply negative voltages The use of negative voltages below -0.3V may create parasitic transistors on LSI lines, Which can cause abnormal operation.
s ORDERING INFORMATION
Part number MB3891PFV Package 64-pin Plastic LQFP (FPT-64P-M03) Remarks
27
MB3891
s PACKAGE DIMENSION
64-pin plastic LQFP (FPT-64P-M03)
12.000.20(.472.008)SQ 10.000.10(.394.004)SQ
48 33
Note : Pins width and pins thickness include plating thickness.
49
32
0.08(.003)
Details of "A" part
INDEX
1.50 -0.10 .059 -.004
17
+0.20 +.008
(Mounting height)
64
"A" LEAD No.
1 16
0~8
+0.08 -0.03 +.003 -.001
0.500.08 (.020.003)
0.18 .007
0.08(.003)
M
0.1450.055 (.006.002) 0.500.20 (.020.008) 0.45/0.75 (.018/.030)
0.100.10 (.004.004) (Stand off) 0.25(.010)
C
1998 FUJITSU LIMITED F64009S-3C-6
Dimensions in mm (inches) .
MB3891
FUJITSU LIMITED
For further information please contact: Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan Tel: +81-44-754-3763 Fax: +81-44-754-3329 http://www.fujitsu.co.jp/ North and South America FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A. Tel: +1-408-922-9000 Fax: +1-408-922-9179 Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST) Tel: +1-800-866-8608 Fax: +1-408-922-9179 http://www.fujitsumicro.com/ Europe FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fujitsu-fme.com/ Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220 http://www.fmap.com.sg/ Korea FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111
All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED. FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.
F0007 (c) FUJITSU LIMITED Printed in Japan


▲Up To Search▲   

 
Price & Availability of MB3891

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X